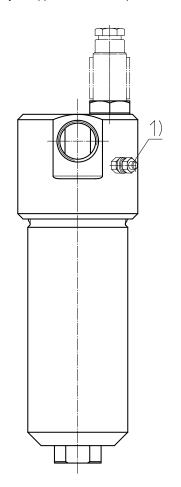
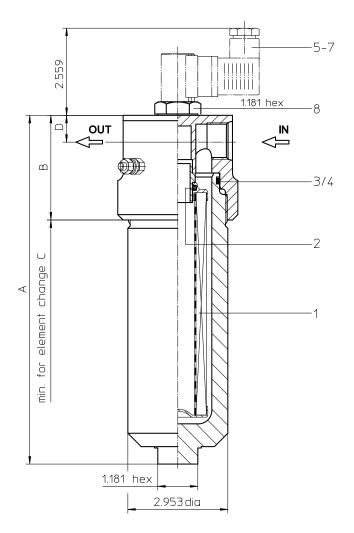

Series EH 60-150 6000 PSI


Dimensions:


type	EH 60	EH 90	EH 150
connection	-8 SAE or NPT ½"	-12 SAE or NPT 3/4"	-16 SAE or NPT 1"
Α	7.67	10.23	14.56
В	3.07	3.07	3.30
С	8.46	11.02	15.35
D	.78	.78	.90
E	3.54	3.54	3.74
F	3.22	3.22	3lbs.
weight lbs.	13	16	20
volume tank	.08 Gal.	.10 Gal.	.16 Gal.

Connection assignments as shown in the table are standard. To exchange connections see item 9 in the type index.

1) Connection for the potential equalization, only for application in the explosive area.

Dimensions: inches

Designs and performance values are subject to change.

Pressure Filter Series FHPF 60-150 4568 PSI

Description:

Stainless steel-pressure filter series EH 60-150 have a working pressure up to 6000 PSI. Pressure peaks can be absorbed with a sufficient safety margin. The EHfilter is in-line mounted.

The filter element consists of star-shaped, pleated filter material, which is supported on the inside by a perforated core tube and is bonded to the end caps with a high-quality adhesive. The flow direction is from outside to inside. Filter elements are available down to

Eaton filter elements are known for high intrinsic stability and an excellent filtration capability, a high dirt-retaining capacity and a long service life.

Eaton filter elements are available up to a pressure resistance of Δp 2320 PSI and a rupture strength of Δp

Eaton filter are suitable for all petroleum based fluids, HW-emulsions, most synthetic hydraulic fluids and lubrication oils.

The internal valve is integrated into the filter head. After reaching the bypass pressure setting, the bypass valve will send unfiltered partial flow around the filter.

The reversing valve provides another level of protection for the filter element. The reverse flow will not be filtered.

1. Type index:

1.1. Complete filter: (ordering example)

EH. 90. 10VG. HR. E. P. VA. UG. 4. VA. -. -. AE 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

1 series:

EΗ = stainless steel-pressure filter

2 | nominal size: 60, 90,150

3 filter-material:

80G, 40G, 25G stainless steel wire mesh 25VG, 16VG, 10VG, 6VG, 3VG microglass

4 filter element collapse rating:

30 = Δp 435 PSI

HR = Δp 2320 PSI (rupture strength Δp 3625 PSI)

5 | filter element design:

= single-end open

6 sealing material:

= Nitrile (NBR)

= Viton (FPM)

7 | filter element specification: = standard

VA = stainless steel

8 process connection:

UG = thread connection

NPT = thread connection according to ANSI B1.20.1

9 process connection size:

= -8 SAE or NPT 1/2" 3

= -12 SAE or NPT 3/4"

= -16 SAE or NPT 1"

10 | filter housing specification:

= stainless steel VA

11 specification pressure vessel:

= standard (DGRL 2014/68/EU)

IS20 = ASME VIII Div.1 with ASME equivalent material, see sheet-no. 55217 (max. operating pressure 4060 PSI)

12 internal valve:

= without

S1 = with by-pass valve Δp 51 PSI S2 = with by-pass valve Δp 102 PSI

= reversing valve, Q ≤ 18.50 GPM

13 clogging indicator or clogging sensor:

= without

AOR = visual, see sheet-no. 1606

AOC = visual, see sheet-no. 1606

= visual-electric, see sheet-no. 1615 AF

VS5 = electronic, see sheet-no. 1619

To add an indicator/sensor to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code.

1.2. Filter element: (ordering example)

01E. 90. 10VG. HR. E. P. VA 1 2 3 4 5 6 7

1 series:

01E. = filter element according to company standard

2 | nominal size: 60, 90, 150

3 - 7 see type index-complete filter

Technical data:

design temperature: 14 °F to +212 °F operating temperature: 14 °F to +176 °F to +176 °F

operating medium mineral oil, other media on request

max. operating pressure:6000 PSItest pressure:8700 PSImax. operating pressure at IS20:4060 PSItest pressure at IS20:5278 PSI

process connection: manifold mounted

housing material: EN10088-1.4571 (316 Ti according to AISI)

sealing material: Nitrile (NBR) or Viton (FPM), other materials on request

installation position: vertical

Classified under the Pressure Equipment Directive 2014/68/EU for mineral oil (fluid group 2), Article 4, Para. 3. Classified under ATEX Directive 2014/34/EU according to specific application (see questionnaire sheet-no. 34279-4).

Pressure drop flow curves:

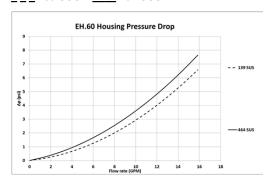
Filter calculation/sizing

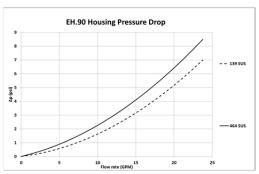
The pressure drop of the assembly at a given flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

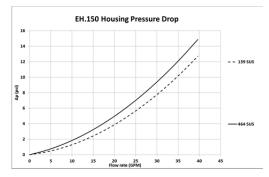
 Δp assembly = Δp housing + Δp element Δp housing = (see Δp = f (Q) - characteristics)

$$\Delta p_{\text{element}}(\text{PSI}) = Q (GPM) x \frac{MSK}{1000} \left(\frac{PSI}{GPM}\right) x v(SUS) x \frac{\rho}{0.876} \left(\frac{kg}{dm^3}\right)$$

For ease of calculation our Filter Selection tool is available online at www.eatonpowersource.com/calculators/filtration/


Material gradient coefficients (MSK) for filter elements


The material gradient coefficients in psi/gpm apply to mineral oil (HLP) with a density of 0.876 kg/dm³ and a kinematic viscosity of 139 SUS (30 mm²/s). The pressure drop changes proportionally to the change in kinematic viscosity and density.


EH	VG			G				
	3VG	6VG	10VG	16VG	25VG	25G	40G	80G
60	6.748	4.685	2.999	2.577	1.760	0.2002	0.1868	0.1280
90	4.059	2.818	1.804	1.550	1.059	0.1210	0.1130	0.0774
150	2.422	1.681	1.076	0.925	0.632	0.0723	0.0675	0.0462

$\Delta p = f(Q) - characteristics according to ISO 3968$

The pressure drop characteristics apply to mineral oil (HLP) with a density of 0.876 kg/dm³. The pressure drop changes proportionally to the density.

Symbols:

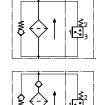
without indicator

with electric

with visual-electric indicator

with visual indicator AOR/AOC

with electronic clogging sensor VS5



filter with by-pass valve

filter with reversing valve

Spare parts:

item	qty.	designation	dimension			article-no.		
			EH 60 EH 90 EH 150					
1	1	filter element	01E.60 01E.90 01E.150					
2	1	O-ring	22 x 3,5		304341 (NBR)	304392 (FPM)		
3	1	O-ring	56 x 3		305072 (NBR)	305322 (FPM)		
4	1	support ring	63 x 2,6 x 1		312309			
5	1	clogging indicator visual	AOR or AOC		see sheet-no. 1606			
6	1	clogging indicator visual-electric	AE		see sheet-no. 1615			
7	1	clogging sensor electronic	VS5		see sheet-no. 1619			
8	1	screw plug	20913-4		314442			

item 8 execution only without clogging indicator or clogging sensor

Test methods:

Filter elements are tested according to the following ISO standards:

ISO 2941	Verification of collapse/burst resistance
ISO 2942	Verification of fabrication integrity

ISO 2943 Verification of material compatibility with fluids

ISO 3723 Method for end load test ISO 3724 Verification of flow fatigue characteristics

ISO 3968 Evaluation of pressure drop versus flow characteristics ISO 16889 Multi-pass method for evaluating filtration performance

North America

44 Apple Street Tinton Falls, NJ 07724 Toll Free: 800 656-3344 (North America only) Tel: +1 732 212-4700

Europe/Africa/Middle East

Auf der Heide 2 53947 Nettersheim, Germany Tel: +49 2486 809-0

Friedensstraße 41 68804 Altlußheim, Germany Tel: +49 6205 2094-0

An den Nahewiesen 24 55450 Langenlonsheim, Germany Tel: +49 6704 204-0 China

No. 3, Lane 280, Linhong Road Changning District, 200335 Shanghai, P.R. China Tel: +86 21 5200-0099

Singapore

4 Loyang Lane #04-01/02 Singapore 508914 Tel: +65 6825-1668

Brazil

Rua Clark, 2061 - Macuco 13279-400 - Valinhos, Brazil Tel: +55 11 3616-8400 For more information, please email us at *filtration*@eaton.com or visit www.eaton.com/filtration

© 2015 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user's responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the information herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.

