

Ceramic Sensor

accuracy according to IEC 60770: 0.5 % FSO

Nominal pressure

from 0 ... 400 mbar up to 0 ... 600 bar

Output signals

2-wire: 4 ... 20 mA others on request

Special characteristics

- LR-certificate (Lloyd's Register)
- GL-certificate (Germanischer Lloyd)
- **DVN-certificate (Det Norske Veritas)**
- ABS-certificate (American Bureau of Shipping)
- CCS-certificate (China Classification Society)
- pressure port CuNiFe (sea water resistant)
- oxygen application

Optional versions

IS-version Ex ia = intrinsically safe for gases and dusts

The pressure transmitter DMK 457 with ceramic sensor has been designed for typical applications in shipbuilding and offshore constructions as alternative to our pressure transmitter DMP 457 with piezoresistive stainless steel sensor.

In combination with the copper-nickel-alloy the DMK 457 is suitable for seawater, e.g. level measurement in ballast tanks, etc.

Preferred areas of use are

Drives Compressors Boiler Pneumatic Control Systems Oxygen Applications

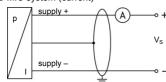
Fuel and Oil

Water and Sea Water

BD SENSORS GmbH BD-Sensors-Straße 1 D - 95199 Thierstein

Shipbuilding and Offshore

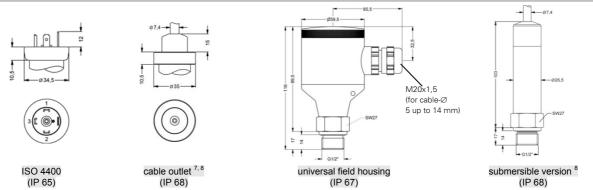
Input pressure range																			
Nominal pressure gauge	[bar]	-1 0	0.4	0.6	1	1.6	2.5	4	6	10	16	25	40	60	100	160	250	400	600
Nominal pressure abs.	[bar]	-	-	0.6	1	1.6	2.5	4	6	10	16	25	40	60	100	160	250	400	600
	mH₂O]		-	6	10	16	25	40	60	100	_	250			-	-	-	-	-
Overpressure	[bar]		1	2	2	4	4	10	10	20	40	40	100		200	400	400	600	800
Burst pressure ≥	[bar]		2	4	4	5	5	12	12	25	50	50	120	120	250	500	500	650	880
Vacuum resistance		$P_N \ge 1$ $P_N < 1$					m res	istand	:e										
Output signal / Supply																			
Standard		2-wire:					= 8												
Option IS-protection		2-wire:	: 4	1 20	0 m <i>P</i>	4 / V _s	= 10	28	V_{DC}										
Performance																			
Accuracy ¹		IEC 60	770:	≤ ± ().5 %	6 FSC)												
Permissible load		R _{max} =	[(V _S -	- V _{S m}	_{nin}) / (0.02 <i>A</i>	λ] Ω												
Influence effects			$R_{\text{max}} = [(V_{\text{S}} - V_{\text{S min}}) / 0.02 \text{ A}] \Omega$ supply: 0.05 % FSO / 10 V load: 0.05 % FSO / k Ω																
Long term stability			Section Sec																
Response time		< 10 m		,															
¹ accuracy according to IEC 6077	70 – Iim	nit point ac	djustm	ent (n	on-lin	nearity,	hyste	resis,	repeate	abilit	y)								
Thermal effects (Offset and																			
Thermal error	•	≤ ± 0.2																	
		in compensated range: -25 85 °C																	
Permissible temperatures		medium: -40 125 °C electronics / environment: -40 85 °C storage: -40 100 °C																	
Electrical protection																			
Short-circuit protection		perma	nent																
Reverse polarity protection		no dar	nage,	but a	also	no fur	nction												
Electromagnetic compatibility	y	emissi - EN	on ar	ıd imr	nuni	ty acc	ordin	g to	loyd (GL	- De	et Nor	ske Ve	eritas	(DNV)			
Mechanical stability															`				
Vibration		4 g (ad	cordi	na to	GL:	curve	2 / a	ccord	ina to	DN'	V: Cla	ss B /	basis	: IEC 6	30068	-2-6)			
Materials		1 . 3 (,			
Pressure port		Standard: stainless steel 1.4404 (316L) cuNi10Fe1Mn (sea water resistant) - for $P_N \le 400$ bar with mech. connection G1/2" DIN 3852, G1/2" EN 837, G1/2" open port, G1/4" DIN 3852, G1/4" EN 837 in combination with housing in CuNi10Fe1Mn																	
Housing	option ² :			stai Cul por	stainless steel 1.4404 (316L) CuNi10Fe1Mn (sea water resistant) - in combination with pressure port in CuNi10Fe1Mn stainless steel 1.4404 (316L); with cable gland														
Cable sheath		option field housing: stainless steel 1.4404 (316L); with cable gland TPE -U (flame-resistant, halogen free, increased resistance against oil and gasoli						oline,											
Seals (media wetted)		resistant against salt, sea water, heavy oil) standard: FKM option: FFKM (only for P _N ≤ 100 bar) others on re																	
Diambar and		option			0/	FFF	KM (o	nly to	r P _N ≤	100	bar)					otr	ners o	n requ	est
Diaphragm Modia wetted parts		ceram				diast	roc~												
Media wetted parts 2 IS-version on request		pressu	ne po	πι, se	ais,	uiapn	ıayııı												
Category of the environme	nt																		
Lloyd's Register (LR) ³		EMV1	EVV	/2 EM	/I//3	EN4V	/4				nı	ımhor	of cer	tificate	o 12/2	20055			
Germanischer Lloyd (GL)		D, F ⁴ ,			vi v J	, LIVI V	-						of cer				инг		
Det Norske Veritas (DNV)		tempe	rature	e: D			midity	/: B			vil	oration	n: B				/ 		
³ for $P_N \le 160$ bar ⁴ with material CuNi10Fe1Mn on IS-protection	ly envir	electro				patibil	ity: B				nu	ımber	of cer	tificate	e: A-12	2144			
Approvals DX19-DMK 457		IBEXU 10 ATEX 1068 X / IECEx IBE 12.0027X zone 0: for version with field housing and cable outlet: II 1G Ex ia IIB T4 Ga for version with ISO 4400: II 1G Ex ia IIC T4 Ga zone 20: II 1D Ex ia IIIC T 85°C Da																	
Safety technical maximum va	alues	U_i = 28 V, I_i = 93 mA, P_i = 660 mW, L_i = 5 μ H, with field housing C_i = 105 nF, with cable outlet C_i = 84.7 nF, with ISO 4400 C_i = 62.2 nF, the supply connections have an inner capacity of max. 90 nF (140 nF with field housing) to the housing																	
Ambient temperature range		in zone		high	er:	-20	. 70 °(0	• • •		oar up								
Connecting cables (by factory)		cable capacitance: signal line/shield also signal line/signal line: 160 pF/m cable inductance: signal line/shield also signal line/signal line: 1µH/m																	
		_																	


© 2016 BD|SENSORS GmbH - The specifications given in this document represent the state of engineering at the time of publishing. We reserve the right to make modifications to the specifications and materials.

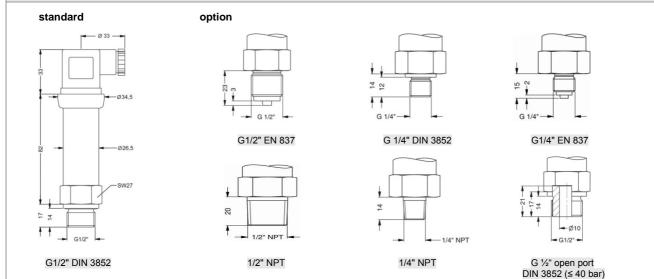
Miscellaneous							
Option oxygen application	for P _N ≤ 25 bar: O-ring in FKM Vi 567 (with BAM-approval); permissible maximum values are 25 bar / 150° C						
Current consumption	max. 25 mA						
Weight	approx. 140 g (with ISO 4400)						
Installation position	any						
Operational life	> 100 x 10 ⁶ pressure cycles						
CE-conformity	EMC Directive: 2014/30/EU						
	Pressure Equipment Directive: 2014/68/EU (module A) ⁵						
ATEX-directive	2014/34/EU						

⁵ This directive is only valid for devices with maximum permissible overpressure > 200 bar

Wiring diagram


2-wire-system (current)

Pin	confid	guration


Electrical connection	ISO 4400	Field housing	cable colour (IEC 60757)
Supply +	1	IN +	wh (white)
Supply –	2	IN -	bn (brown)
Shield	ground pin	<u></u>	gnye (green-yellow)

Electrical connections ⁶ (dimensions in mm)

⁶ Generally shielded cable has to be used! Cable versions are delivered with shielded cable. For ISO 4400 the use of shielded cable is compulsory.

Mechanical connection (dimensions in mm)

Tel: +49 (0) 92 35 / 98 11- 0 Fax +49 (0) 92 35 / 98 11- 11

⁷ tested at 4 bar or 40 mH₂O for 24 hours

⁸ shielded cable with integrated air tube for atmospheric reference (for nominal pressure ranges absolute, the air tube is closed); different lengths available

Ordering code DMK 457 **DMK 457** in bar, gauge 5 9 0 in bar, absolute in mH₂O, gauge 5 9 1 5 9 2 5 9 3 in mH₂O, absolute [bar] [mH₂O] 4 0 0 0 6 0 0 0 0.4 4 6 0.6 1 0 0 1 10 1.0 6 0 16 1.6 25 2.5 2 5 0 1 40 4.0 0 0 60 6.0 6 0 0 6 0 0 1 1 0 0 2 1 6 0 2 2 5 0 2 4 0 0 2 6 0 0 2 1 0 0 3 100 10 160 16 250 25 400 40 600 60 100 0 160 6 2 5 0 3 250 400 0 0 600 0 0 3 X 1 0 2 9 9 9 9 customer consult 4 ... 20 mA / 2-wire 1 Intrinsic safety 4 ... 20 mA / 2-wire customer F 9 consult Accuracy 5 9 consult Electrical co Male and female plug ISO 4400 (for cable Ø 4...6 mm) G 1 0 Male and female plug ISO 4400 GL (for cable Ø 10...14 mm) 0 0 G Male and female plug ISO 4400 GL ^{1,2} (for cable Ø 4.5...11 mm) G 0 1 Cable outlet (TPE-U-cable) R Field housing stainless steel 8 0 Submersible version (1.4404 / 316L) Т 3 with TPE-U-cable 3 Submersible version (CuNiFe) T S 3 with TPE-U-cable 3 9 9 9 customer consult Mechanical connection 1 0 0 2 0 0 3 0 0 4 0 0 H 0 0 N 0 0 G1/2" DIN 3852 G1/2" EN 837 G1/4" DIN 3852 G1/4" EN 837 G1/2" DIN 3852 open pressure port 4 1/2" NPT 1/4" NPT 4 0 9 9 9 customer consult FKM 1 7 FFKM customer 9 consult Pressure port Stainless steel 1.4404 (316L) Copper-Nickel-alloy (CuNi10Fe1Mn) K customer 9 consult Diaphragm Ceramics Al₂O₃ 96% 9 customer consult Special version standard 0 0 0 0 0 7 9 9 9 oxygen application customer consult Prices EXW Thierstein, excluding package

04.03.2015 E

datasheet. Subject to change without

about options are defined in the

Detailed information

properties are not guaranteed.

dokument contains product specification;

Shielded cable has to be used! Cable versions are delivered with shielded cable.

² female plug is GL-approbated

³ cable with integrated air tube for atmospheric pressure reference; different lengths deliverable

only for P_N ≤ 40 bar possible

 $^{^{5}}$ only for $P_{N} \le 100$ bar possible

 $^{^{6}}$ optionally for nominal pressure ranges up to 400 bar and mechanical connections G1/2" DIN 3852, G1/2" EN 837, G1/2" open port,

G1/4" DIN 3852, G1/4" EN837 in combination with housing in CuNi10Fe1Mn

⁷ oxygen application with FKM seal possible up to 25 bar